
 IV. DIVERSITY IN RESOURCES AND SECURITY
 DOMAINS: DEFINING ISOLATION SCENARIOS

 I. BACKGROUND . V. A REAL WORLD CASE STUDY:
 GOOGLE CHROMIUM

 III. TOOLBOX TO BUILD NEW HARDWARE ISOLATION PRIMITIVES .

Example: While in State Restoration mode, if the
storage space required to restore the state exceed a
given side, a state sanitation is programmed for the
next context switch.

Partitioning

Sanitizing

Invisibility

State Restoration

Allocating part of the ressource
for a given security domain

The ressource micro-architecture
is reset to a public state

The micro-architectural state is
not modified, making the security
domain invisible to others

The attacker's micro-architectural
state is restored when context-switching
back, making the victim's micro-architectural
state not observable.

Isolation strategy might need to be combined to
enforce security, performance or scalability.

Toward Fine-Grain and Scalable Hardware Isolation Primitives
By Jules Drean, Srini Devadas, Daniel Sanchez and Mengjia Yan

INTRODUCTION .
 Current hardware isolation primitives do not
protect against micro-architectural side-channels
efficiently. They are coarse grain, not scalable
and not dynamically adaptable.
 We propose to :
- Create new hardware isolation primitives
- Defining and characterizing isolation scenarios
- Build a framework to tune the isolation
primitives to different isolation scenarios
- Real-world case study with Google Chromium

Security Domains May Interact Using Different Patterns
Application Partitioning Sensitive Function Isolation

Reusable Execution EnvironmentsShort Function Calls

Experiment Description :
Instrument Chromium to observe execution traces while
launching the program and loading one page.
We define Security Domains using thread boundaries
(loading one page creates ~72 threads)
We record the length of traces inside and outside of
each Security Domain

Side Channels that exploit shared hardware resources and
micro-architectural state to exfiltrate secret information.

Two Security Domains (SDs) are Strongly Isolated if the
timing of the micro-architectural events of one is independent
from the timing of the micro-architectural event of the other.

Insight: Isolation Must be Enforced For Every
Micro-Architectural State

What is strong isolation ?

What are micro-architectural side-channels ?

Memory, Caches, Branch Predictor, Memory Buses...

What we need: Address all the limitations above

Limitations of Current Isolation Primitives:

For example:
- Support more than a thousand security domains
- Support high variety of resources and security
domains

a) Do not cover every micro-architectural states
b) Too coarse grained
c) Not scalable
d) Not dynamically adaptable

 II. PROPOSAL .
- Build new hardware isolation primitives.
- Define and characterize isolation scenario for each type of micro-architectural
 structures and security domain transition patterns
- Design a unified framework to tune and dynamically manage isolation
strategies and resources

The optimal isolation strategy depends on:

Ressource Type Transient or Stateful / Size / Part of the Memory Hierarchy

Sharing Type Sequential or Simultaneous / Private or Not

SD Type / Interaction Long or Short-Lasting / Long or Short Interruptions / Type of Interactions

Example : Private Cache Isolation Using State Restoration

Memory

Prefetch
Engine

Cache Meta-data

SD0

Tag SDid
Eviction

Meta-data Buffer
If recording state modifications is too expensive -> switch to a sanitize
strategy

Switch from SD_0 to the outside
Record evicted addresses from SD_0 in the allocated Eviction Metadata Buffer
If the buffer overflows is too small, program a cache flush for next re-entry

Switch from the outside to SD_A
If cache flush programmed -> flush
Else, restore cache state by prefetching evicted addresses back

How to
characterize
interactions

between
Security

Domains for a
given shared

resource?

Time
SD_0 SD_1Others

SD_1

SD_0

Then, for each SD, we plot the

Not SD_0
SD_0

SD_0SD_1

Not SD_0
Not SD_1

C
um

ul
at

iv
e

N
um

be
r o

f
In

st
ru

ct
io

ns

Length of Trace Inside the
Security Domain

Length of Trace Outside the
Security Domain

Cumulative Number of Instruction as a Function of the Trace Length

SD_0SD_1

Result Description : Security Domains Have Different
Behaviours
We highlighted in color the two hottest security domains.

We can tune isolation primitives for different security domains
based on their behaviors:
 SD_0 cache partition
 SD_1 ?
 Grey SDs invisibility / sanitizing

SD_0

Number Instructions HIGH
Context Switch

Frequency LOW

SD_1

HIGH

MEDIUM

